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WAVE PROPAGATION IN THE CROSS-SHAPED CONNECTION OF INFINITE ELASTIC STRIPS* 

S.P. PEL'TS and V.M. SHIKHMAN 

A method of solving dynamic contact problems for rigidly coupled elastic 
bodies is proposed. The problem of the travelling of harmonic Rayleiqh- 
Lamb waves arriving from infinity at a cross-shaped connection between 
elastic strips is considered. The contact dynamic interaction between 
two elastic bodies when there is no friction was previously investigated 
in /l-3/. 

Suppose a horizontal strip with constants P17 A,* Vl occupies a region ISICW, 
-2H<yQO in a Cartesian system of coordinates. The two vertical half-strips with con- 

stants pa, h,, pa, occuping the regions ]I 1 <i, O<y<m and Ix Idi, -m<y< -2H are 
rigidly coupled with a horizontal strip in the contact region. All the geometrical parameters 
are dimensionless. A symmetrical Rayleigh-Lamb wave propagates in the horizontal strip in 
the positive direction of the 5 axis. 

In view of the symmetry of the problem about the mean line of the horizontal strip it is 
sufficient to consider the upper half of the mechanical system. The problem can also be split 
into symmetrical and antisymmetrical parts relative to the y axis. The symmetrical part will 
be considered below; the antisymmetricai part can be considered in a similar manner. 

The boundary conditions for the horizontal strip have the form 

where v,(x,y) is the displacement along the y axis, $1 (X, Y) and z,(s, y) are the normal and 
tangential stresses, and p(s) and g(x) are the components of the unknown contact stresses; 
the harmonic factor e-i"' is omitted here and henceforth. 

The travelling wave is specified as a propaqatinq Rayleigh-Lamb wave mode,andcorresponds 
to the uniform solution of the Lame equations for a horizontal strip without a load on the 
side faces. The displacements in the specified wave have the form 

ua (I, y) = -Aa, (klo)-‘% (a,, Y) sin a$, u. (5, y) = A$ (a,, y) 00s a& 

UJ~ (u0,y)=(Za2 - Q)sh k,"H ch klo(“(y -+-If)- 
2kr”kR sh k;H ch k,” (y _t H) 

tT)* (ao, y) = (2a~~ - x3) sh k?“H sh kxo {y + H) - 

2a02 sh k<H sh k2* (y + H) 

4” = (a$ - x#/*, kz” = (aoa - x#‘z, xl8 = A& , 

Here A is the amplitude and a, is the real root of the Rayleigh-Lamb equation 

A (a) G (2~4~ - ~~8)~ sh k,H ch klH - 4a’k,k,sh k,H ch k&=0 (2) 
k,= = ae - xla, kS8 = ar - x,? 

For the vertical half-strip the side faces are free from stresses. In the contact region 
the conditions of rigid coupling are satisfied. The solution of boundary value probl.em (1) 
is found by an integral Fourier transformation with respect to the X coordinate (a is the 
conversion parameter). We obtain for the displacements of the horizontal strip 
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ms (a, p) = (2~9 - xs”) ch k,R ch kS (g + H) - 
2cca ch k,H ch kl Iy + If) 

@a (a, y) = 2jbik, ch k&f sh kl (y + RJ - (2aB - 
xpp) eh klH sh kS (y + H) 

p(a)= -&- i p(s)oosa.zds, 
1. 

-- g(a)= &- _Ig(4sin=~~ s 
-1 

The contour of integration in (3) coincides with the real axis, circumventing the 
singularities of the integrands in accordance with the limit-absorption principle /4/. 

For the vertical semistrip the solution is constructed in the form of series in the 
uniform solutions for an infinite strip with boundaries free from stresses 

(4) 

16 (z)=2 @;+m0,) ah ml,=ah*,,--28,*shmagBhm~n 
n ’ 

(8,,* + 4,J ah mm 

rn:, = fIna - t!lL8, m:, = Bna - W, 61= * , &,=A$ 

Here c, are unknown complex constants, and fin are the roots of the Rayleigh-Lamb dis- 
persion equation for an infinite strip with constants pa, Pr, h, 

GTa - i&a)9 oh m, shm, - BpSrnlm, chm,sh m, = 0 (5) 

Eq. (5) has a finite number of real and imaginary roots and a denumerable set of complex 
roots for each value of the frequency. The real and imaginary roots lie symmetrically about 
the origin of coordinates, while the complex roots are distributed symmetrically in all foux 
quadrants of the complex plane. The summation in (4) is carried out over the roots lying in 
the upper half-plane, taking into account the requirements of the principle of energy radiation 

/4/. 
From the condition for the stresses in the contact region tobe equal we can obtain 

P (4 = iit GJyn (4, g (4 = j\ cl% (4 

Here a,,, (x) and z,,(x) are the stresses corresponding to the uniform solutions 

uUn(z)= 2pa(ml,ch rn&~[(2&a -6,“) chml,ch m+- 

(2rnh -i- 82) ch %, ch ml4 

(6) 

‘F,(S) =4&f& (sh m.# (sh %n sh m,,x - sh m, sh m~ax) 

Substituting relation (6) into solution (3) we can represent the displacement of the 
horizontal strip z~r(z,P) and sX(.z,y) in terms of the uniform solutions of the vertical strip. 
To obtain an algebraic set of equations in c,, we will use the Reissner variational principle, 
which in the case 

Here vl (x, 0) 
(3). The uniform 
gonality 151 

considered, taking (6) into account, has the form 

~,IC~~I~u~;(z)Vn(z)+ rj(x)~n(x)l~~r 

i [U~j(~)~l(5r0)3_7j(5)U~(J,O)]dXl IGf,2v**. 
-1 

(7) 

and u,{s,O) are the displacements in the coupling region, obtained from 
solutions occurring in (7) satisfy the conditions of generalized ortho- 
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W,, # 0, &” = 81’; j, n = 1, 2, . . _ 

Using (O), we obtain from (7) an infinite algebraic set of equations in C,, of the 
following form: 

CiSj + 2 Cnanj = 4, j=l,2,...; Sjz$ 
7%=* 

(9 

1 

~~~(a)--~_~n,,(r)cosaxdx, s 
1 

*,(a)= - * _r7,(X)sinnXdx 
s 

The parameters of the Rayleigh-Lamb incident wave (amplitude A and wave numbera,) occur 
on the right-hand side of system (9). 

We will obtain the total displacement field for y = 0, including both the symmetrical 
and antisymmetrical parts. The symmetrical part is specified by relations (3). We will 
change from integration over a to integration in the complex plane 5 = a + in. When 

XC--l, closing the contour 52 in the lower part of the complex plane and calculating the 
residues at the poles, we obtain 

m 
241(X, 0) = $ Dj exp (- iajX) + ,& Ek exp (i&X) -t Uo (X, 0) 

j-al 
(10) 

Here aj are the real roots and clr are the complex roots of Eq. (Z), and D, and & are 
constants which depend on all the parameters of the problem. The wave field contains a 
finite number of refracted waves travelling in the negative direction of the X axis, and an 
infinite number of non-uniform waves with attenuating amplitude. The number of travelling 
waves is equal to the number of poles of the integrand in (3). The phase velocities of the 
waves are determined by the elastic constants of the horizontal strip, 

When x>1 the wave field contains the same wave as in (lo), but propagating in the 
positive direction of the X axis. 

In the region --1 <x<O the displacement field can be represented in the form 

U1 (I, 0) = j$ (F, COS CtjX + Gj Sin CGjZ) f- 5 Hj exp (- ioljX) + 
j=l 

k~l[Khex~(lC~x) + &exp(- GX)l -I- no(X, 0) 

Here the first sum represents standing waves, and the second represents waves travelling 
in the negative direction of the x axis. The phase velocities of these waves are determined 
by the real roots of Eq.(2). The third sum represents attenuating waves, corresponding to 
the complex roots. The amplitudes of the waves in (11) are determined by all the parameters 
of the problem. 

When O<x<l the nature of the wave field is the same as in (111, with the exception 
of the travelling‘waves, which in this case change their direction of propaqation. 

At the corner points of the coupling region there is a singularity in the stressed state 

/6/. In polar coordinates P, 9~ with centre at the corner point, the stresses have the form 

s'cp - P v-1, be - Py-'7 P-+0 
where 7 is found from the equation 

(12) 

Ps2 (1 - vl)* (sin*'l,yn - JJ") + PLta (1 - ~,)~sin*l)n + 
1/a (vl - vB)" (sinaV8yn - y") sin*yn + 2pLlpl (1 - ve)(i - 
vJ sinyxsin'l,yn cos3/,yn + pg (pl - pg) (1 - vl) (sina112yn - 

ye)sin2yn + pl(vz - pl)(l - v,)sin*yn sirPV,yn. = 0,O < y ( 1 
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Using representation (4) we can obtain 

where (J,,,, (5) are the stresses corresponding to the uniform solutions. The asymptotic behaviour 
of ~~~(5) for large n is determined by the well-known asymptotic form of the roots of the 
dispersion equation /7, 8/ 

pn - in (n - l/J + */p Inn (4n - 1) + 0 (r@ln n) (13) 
Using (13) and transferring to polar coordinates, we obtain that the behaviour of the 

stresses as p-+0 is determined by the series 

u=(u~,T,,,~)-~~C~(- l)nn-“*e-nr, N>l (14) 

z = ?cp co9 cp, a* 0, cp E IO, SC/21 

It follows from (14) and (12) that the conditions at the corner point dictate the 
asymptotic behaviour of the constants C, as n+oo. By finding the constants C, in the form 
c, - co (--1)" nag, where fiO is to determined, we obtain from (14) 

We will use the result from /9/. If 

then the estimate f(z)-~-(~+~), z+ +0 holds. Hence, it follows from (12) that Bo = '/a - y. 
Therefore, the choice of the asymptotic behaviour of the constants in 

C, = C, (--1)” n’~rV, n + 00 

ensures the required singularity of the stresses at the corner points 
The infinite system (9), taking into account the specified asymptotic 
reduces to the finite system 

CjSj +- 3 Cnanj + CO _f+, (- 1)” n’fr%,j = bj 
n=1 

j = 1, 2, . . ., N,+ 1; Na>NN, 

The improper integrals in a,i can be evaluated by the methods of the theory of residues. 
The above approach can be applied to the case of the oscillations of an elastic half-strip 

coupled at one end to an elastic half-plane, when subjected to a travelling Rayleigh wave. 
The overall form of the solution in this case does not differ from that described above. 
Problem (1) for an infinite strip reduces to the problem of the oscillations of a half-strip 
with load specified on the boundary and a Rayleigh wave propagatinginthe positive direction 
of the I axis. The improper integrals occurring in the solutioncanbe found by the effective 
method described in /lo/. The displacement field when y = 0 consists of travelling and 

the form 

(15) 

of the contact (12). 
behaviour of C, (151, 

scattered Rayleigh waves and attenuating longitudinal and transverse waves. In the contact 
region standing waves are added to the wave field, corresponding to the uniform solutions for 
the strip. 
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AVERAGING IN PROBLEMS OF THE BENDING AND OSCILLATION 
OF STRESSED INHOMOGENEOUS PLATES* 

A.G. KOLPAKOV 

A method for describing on the average the bending and oscillation of 
strongly inhomogeneous plates, stressed in their plane, is proposed. A 
problem that arises in various fields of engineering differs from those 
considered in /2-4/ in that the operators are not known a priori to be 
of fixed sign. 

1. The bending of an inhomogeneous stressed plate. We consider a plate with 
irregular thickness of irregular elastic constants (ribbed or composition). Let forces be 
applied to the plate that produce in its plane a stressed state u$(x) (the parameter e 
characterizes the degree of irregularity). In the context of the Kirchhoff-Love hypothesis, 
the equation of equilibrium may be written as (we(x) is the normal bending of the plate) 

The flexural rigidity D"(x) and Poisson's ratio v"(x) (we consider locally isotropic 
plates) depend on the space variable x E@; QC Re is the bounded domain occupied by the 
plate. As the dependence of De, Ye on XI we take /2, 6, 7/ De(x) = D(x/e), ve(x)= v(x/e), where 
the functions D(y), v(y) have the characteristic size of oscillation equal to unity. The 
stresses aij"(x) in the plane of the plate are also functions of x with the characteristic 
size of oscillation equal to the characteristic size of the irregularity e. For e<<i, i.e., 
in the case of strongly irregular plates, in order to describe the bending and loss of 
stability we use /2-4, 8/ the asymptotic method of homogenization /6, 7/. 

Problem (1.1) will be studied asymptotically as e-+0 with the proviso that the plate 
edges are rigidly clamped (we know /l, 2/ that this is equivalent to considering (1.1) in 
functional space H,,*(Q) /9, lo/). We consider the problem in the abstract statement. Given 
the sequences of linear selfadjoint operators, bounded uniformly as e+ 01 

L,, L : Ho=(Q) -> IT-$ (Q); M,, M : Hok (Q) -> H-k (Q), 0 < k < 2 (4.2) 

(for the definition of a space of type Ha(Q) see e.g., /9, lo/). The operator-Lc is the 
sum of the first three terms of the left-hand side of (l.l), while -MB is the sum of the 
remaining terms, which describe the influence of the stresses in the planeof the plate on 
its normal bending. Let the operators L, and L be positive definite: there exists c > 8, 
independent of e + 0, such that <LBu, u)* 2 c (( u 11 *a for any u E Hoa (Q) (<.,.>c, II . Ilk is the 

operation of pairing and norming in H,‘(Q) /3/j. 

*Prikl.Ifatem.Mekhan.,51,1,60--G7,1907 


